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Abstract—A theoretical analysis is presented for heat and mass transfer during sublimation-dehydration.
The energy equations in the dried and frozen regions are solved. Equations are presented for hydrodynamic
and diffusional flow in the dried region for free-molecule, transition, and continuum flow regimes. The
energy and vapor flow equations are coupled to give closed form solutions for the interface temperature
as a function of the flow regime, interface position, transport property data, and externally controlled
boundary conditions. The equations are valid for simultaneous hydrodynamic and diffusional flow in the
continuum and transition flow regimes, and are valid for molecular diffusion in the free-molecule regime.
Closed form equations are presented for the interface position as a function of time for cases where the
interface temperature is either constant or a linear function of the interface position.

The results indicate that if heat is transferred through both the dried and frozen layers, the interface
temperature will change as the interface position changes. Numerical calculations for freeze-drying beef
show that this relationship is approximately linear for chamber pressures between 0-5 and 4-0 torr. It is also
found that the pressure which gives the fastest drying rate for beef is between 0-5 and 1-0 torr. For all
beet samples 1-5 inches thick or less, drying is taster when it takes place from both faces than when it takes
place from only one face and heat is conducted through the back face. Numerical calculations are presented

which show the feasibility of atmospheric freeze-drying of thin samples.

NOMENCLATURE C,. specific heat [B/lbm °R];
A, defined by equation (29) [Ibf2s/lbm ft>]; D, mutual diffusion coefficient [ft?/s];
B, defined by equation (30) [Ibf?/ft*]; Dy, Knudsen’s diffusion coefficient defined
C, defined by equation (31) [1bm 1bf?/s ft*]; by 2/3)rd [ft?/s];
C,, defined by equation (25) [1/ft*]; F,, parameter defined by equation (8) [1/ft];
C;, defined by equation (37) [B/s]; g, constant equal to 322 [ft Ibm/Ibf s?];
C,4, defined by equation (38) [B/fts]; AH, heat of sublimation [B/lbm];
Cs, defined by equation (39) [B/ft?s]; k,  thermal conductivity [B/s ft °R];
Ce defined by equation (40) [B/ft3]; Kn, Knudsen number (4/2r ) [dimensionless]
C,, defined by equation (41) [B/ft?]; I, length of capillary tube [ft];
Cs, defined by equation (42) [B/ft*]; L, thickness of freeze-drying sample [ft];
M, molecular weight;
S *This 1i{nvestig}a\\ti(c;n was Ijt;pported by the Public Health IX , . mass flow rate [lbm/ft2 S];
€rvice Kesearc rants ] .
e e (TGO UL g . molr Tow e ol
Industrial Health and FD-00156-03 from the Food and  1»  total pressure [Ibf/ft*];
Drug Administration. P, partial pressure [Ibf/ft?];
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AP, pressure difference [1bf/ft*];

Q. parameter defined by equation (22)
[1bmy/ft s];

ro, constant defined by equation (35) [°R];

r,, constantdefined by equation (35)[ °R/ft];

r.,  capillary radius [ft];

R,  gasconstant [ft 1bf/lbm °R];

R, universal gas constant [ft Ibf/mole °R];

R,. parameter defined by equation (26)
[1bm?/ft*s?];

R,, parameter defined by equation (27)
[1bm/ft* s];

S.  reflection coefficient [dimensionless];

t,  time [s];

T,  temperature [°R];

4,  macroscopic gas velocity [ft/s];

o,  average molecular velocity [ft/s];

x, freeze-dried model coordinate [ft];

X, position of interface between dried and
frozen regions [ft];

y, molar concentration, moles of compo-
nent divided by moles of mixture ;

B,  function defined by equation (5) [1/it];

I, first-order correction for nonroundness
and other irregularities of the capillary
[dimensionless];

¢p, permeability in the continuum regime
[£t];

g, permeability in the transition regime
[ft*];

n,  viscosity [1bf s/ft*];

A, mean free path [ft];

W, viscosity [lbm/ft s];

p,  density [Ibm/ft*];

g,  porosity, pore volume divided by total
volume [dimensionless];

1, tortuosity factor [dimensionless].

Subscripts

a, air;

e, effective;

i, ice;

L, position at frozen back face;

w,  water vapor;

X, position of interface;

0, position at dried surface;

I, dried region:
11, frozen region.

INTRODUCTION

SuUBLIMATION-dehydration is a process where
biological substances are preserved by drying
in the frozen state. The substance to be dried is
frozen and then placed in a vacuum chamber
where the pressure is lower than the triple point
of water. Heat is supplied to the product where-
upon the frozen water component sublimates
and the vapor passes out into the chamber. The
vapor is then collected or carried away. The
process can be depicted as a one-dimensional
situation where the ice front recedes into the pro-
duct as heat is continually supplied. The vapor
flows through the resulting dried layer under
the influence of a total pressure gradient and a
partial pressure gradient of the water vapor.

There have been previous heat and mass
transfer analyses reported on the freeze-drying
process. In [1-6], various assumptions were
made to limit the generality of the results. These
include considering either hydrodynamic or
diffusional flow but not both, considering heat
transfer only through the dried region, not
considering all the flow regimes, considering
the interface temperature and pressure constant
or not specifying how to determine them. Dyer
and Sunderland [7] present an analytical
solution for freeze-drying by coupling the
energy, diffusion and hydrodynamic equations.
They consider the general case where heat is
transferred through both the dried and frozen
regionsand theinterface parameters vary through-
out the process. However, they only consider
drying in the transition regime, and assume
that the temperature distribution in the dried
region is linear. This seems to be quite valid for
drying of beef, but might limit the application to
other processes. In addition, the calculation
procedure involves trial and error solutions that
must be carried out on a computer.

There is a need for a general analysis of the
freeze-drying process that will yield useful results,
yet still adequately represent the physical
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situation. The purpose of this paper is to present
an analysis giving closed form solutions for the
drying time when hydrodynamic and diffusional
flow at all pressures, as well as heat transfer
through the dried and frozen regions are
considered.

ANALYTICAL INVESTIGATION

A one-dimensional model of the freeze-drying
process is illustrated in Fig. 1. As drying
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Fi1G. 1. Model of freeze-drying process.

proceeds, a dried layer forms and is distinctly
separated from the frozen layer of the product.
The interface thickness between the dried and
frozen layers has been measured during drying
of beef by Hatcher [8] and found to be less than
5 mm thick. Hatcher also found that after the
phase front passed a specific position in the meat,
there was no more than a 3 per cent variation in
the moisture content for the remainder of the
process. In addition, there was less than a 3 per
cent change in the moisture content of the frozen
section until the passage of the phase front. Most
foods have a structure similar to wood in that
they have a grain growth in a certain direction.
This grain or fiber direction is usually oriented
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parallel to the heat and vapor transport, because
the thermal conductances are larger in this direc-
tion. The pore structure of the dried region is a
complex path in one general direction which can
be idealized as a tortuous bundle of capillary
tubes of non-uniform cross section. Heat re-
quired for sublimation may be transferred by
conduction through the porous dried layer, or it
may be conducted through the frozen layer, or it
may be conducted through both. The sublimated
vapor flows through the dried layer under the
influence of both a total pressure gradient and a
partial pressure gradient. The model described
above can be adapted to the special case of equal
drying from both sides Ly simply letting x = L be
the center line of the product and setting the heat
transfer through the frozen layer equal to zero.

The theoretical analyses involve solving the
energy equation for both the dried and frozen
regions, solving the continuity and momentum
equations for the vapor flux in the continuum,
transition, and the free-molecule flow regimes,
and combining the equations to determine how
the interface temperature varies throughout the
drying process. With the interface temperature
established, equations will be derived for both
the drying rate and the drying time as a function
of the sample thickness and drying regime.

All transport properties which are pressure
and/or temperature dependent will be evaluated
at the vacuum chamber pressure and mean tem-
perature, respectively. Thus, for a given vacuum
chamber pressure and fixed boundary tempera-
tures, all transport properties will be treated as
constants. In addition, at any point in the dried
layer, the vapor temperature and the dried food
product temperature are assumed equal.

All of the energy, continuity and momentum
equations used will be one-dimensional and
“‘quasi-steady.” The latter assumption implies
that the time rates of change of properties
{except the change of enthalpy with phase change)
are assumed negligible in comparison to the
space rates of change. Due to the slow drying
rates this assumption appears to be valid; for
example, it takes approximately 30 h to dry a
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slab of beef 1'5 in. thick. In addition, Dyer [9]
solved the “‘exact” and ‘‘quasi-steady” energy
equations assuming that the interface tempera-
ture remained constant. He used the results to
get drying times and found that the two separate
methods differed by only 2 per cent.

The type of flow in the capillary channels
depends upon the ratio of the mean-free path
of the vapor molecules to the capillary diameter,
the Knudsen number. Continuum flow exists
for Kn < 0-01, transition flow exists for 001 <
Kn < 2, and the free-molecule flow exists for
Kn> 2.

Energy equation

The following equation for the temperature
distribution in the dried region can be obtained
by making an energy balance on a differential

element:
T,  CpodXdTy

dx? k;

The first and second terms represent conductive
and convective heat transfer respectively. If the
mass-transfer rate were small so that the con-
vective effect could be neglected, the governing
equation would simply be the one-dimensional
steady state heat conduction equation, and the
solution would be a linear temperature profile.
Therefore, the mass transfer accounts for the
non-linearity of the temperature distribution
in the dried region. The boundary conditions
are

(1)

=T,
T, =

atx =0 (2)

Ty atx =X, (3)

The solution to equation (1) is
'1} . ITO_ 1 — e—p)(

= g 4
Ty—T, 1—¢ B @)

where
_ poC,dX

k, dr
It will be seen later that T, actually varies during

the drying process if heat is conducted through
both the dried and frozen layers. Since the

B (5)
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interface movement is extremely slow, it will
be assumed that equation (4) adequately repre-
sents the temperature distribution in the dried
region at any instant. Since there is no mass
transfer occurring in the frozen region, the
temperature distribution is linear and given by:

Ty—T, x-1L

T,—1T, X-L

(6)

Equation (4) cannot be used if closed formed
solutions are desired because the interface posi-
tion and its derivative both appear in the argu-
ment of the exponential term. Some approxima-
tion to the above profile must then be used.
Dyer and Sunderland [ 7] expanded the exponen-
tial terms in a Taylor series and neglected all
terms of higher order than one. This amounts
to the same thing as assuming a linear tem-
perature profile in the dried region, which is
quite acceptable for most freeze-drying processes
where the mass-transfer rates are low. However,
a second ordered polynomial will be used in this
analysis to be as general as possible. By using
the boundary conditions (2) and (3) with an
energy balance at the interface, the assumed
profile reduces to:

T-T, «x xf[x
T = T 1—-=||=—-F
Ty — T X+[ X]L 4 7

where
AHPigg)—( — ki L TL]
F - dt X -L ®)
o [T, — Tx] k; o

Continuity equations

For either the sublimated vapor or air, from
the conservation of mass for steady, one-dimen-
sional flow, it follows that the flow rate is con-
stant. Since for the air species the flow rate is
zero at the interface, it is zero throughout the
entire dried layer.

Momentum equations
Free-molecule flow regime. The momentum
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equation for a gaseous mixture in the free-mole-

cule flow regime, in a capillary tube of uniform

cross-section and length is given by Present [10]
2r, _ AP

N=3 1Ry ®)

where 7 is the average molecular speed given
by (8RT/aM)*. Equation (9) was derived for
isothermal flow. Therefore, in order to use this
equation, it will be assumed that the tempera-
ture gradient in the dried region has no effect
on the flow rate, and the vapor properties can
be evaluated at an average temperature. Dyer [9]
showed both experimentally and analytically
that this thermal transpiration effect is negligible
in the transition regime. It was shown by Hill
[17] that the effect is also negligible in the free-
molecule and continuum regimes. According to
Present, if a free-molecule flow of a binary gas
mixture takes place, the component gases will
diffuse along the tube independently of each
other and equation (9) can be applied to each
gas separately, if AP is interpreted as the partial
pressure drop.

Several corrections must be made to equation
(9) in order to make it applicable to flow in
porous media. The flow is for a unit area of the
capillary tube. In order to convert the flow to a
unit surface area of the food sample, the equation
must be multiplied by the porosity, o. The vapor
actually travels a longer, tortuous path through
the food, so the equation is corrected by multi-
plying the equation by a constant I The
temperature of the vapor in equation (9) will be
taken as the average temperature between the
interface and the surface. Therefore, the momen-
tum equation representing the flow rate of water
vapor in the free-molecule flow regime is given
by

_ 4rcrﬁw6 [PWO - PwX]
Y7 3XR[T,+ Ty]
Continuum flow regime. The momentum equa-

tion for the gaseous mixture is derived from
Darcy’s Law (see Carman [ 11]) for flow through

(10)
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a porous material. Thus

(11)

The proportionality constant ¢ is called per-
meability and is usually experimentally deter-
mined for the material under study. If the
equation is integrated, again assuming iso-
thermal flow, the mass rate of flow of water
vapor is

_PED[PO—Px]gc
= X :

It should be noted that the actual density
variation in the dried region is such that under
the most severe conditions, the local values will
not deviate from the density calculated at the
average region temperature by more than 10
per cent.

In the analytical model, the pressure quanti-
ties that are assumed known are the total
chamber pressure, P,, partial pressure of the
water vapor in the chamber, P, and the partial
pressure of the water vapor at the interface,
P,. Under actual drying conditions, P,, and
P, can be controlled by properly regulating
the flow of air and water vapor in the chamber.
The last quantity is assumed to be the equili-
brium vapor pressure of the frozen solid at the
temperature that exists at the interface. This
relationship was determined for several frozen
meats by Hill and Sunderland [12]. Note that
the total pressure at the interface appears in
equation (12) and is therefore an unknown
quantity. It must be determined by use of an
additional momentum equation for this regime.

Johnson [13] and [14] suggests that the
steady diffusion equation (Fick’s law) for con-
tinuous transport can be interpreted as an
equation of motion of one of the constituent
gases. Thus

N,

12)

PD,, dy,
RT dx’

Nw:yw(Nw+Na)_ (13)

Since D, is inversely proportional to pressure
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(from kinetic theory) and N, = 0 (from con-
tinuity), the equation can be integrated directly
to give:

Nw — PDaw In {1 - ywx}.
RTX 1 — yuo
Equation (14) represents the flow if D, is the
effective diffusion eoefficient for flow in a
porous medium [D,,].. In applying the theory,
a value for [ D,,,]. of § the value for free diffusion
in air at atmospheric pressure, as suggested by
Harper and Chichester [15] will be used.
Equations (12) and (14) can be combined to
eliminate the total pressure at the interface :

(14)

PwX

1—
Nwzp[ggrv]eln PO—[.uX_Nw/pngc] -

(15)

Transition flow regime. The momentum equa-
tion for the gaseous mixture is:
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pressure difference terms, as shown by Dyer and
Sunderland [7].

As in the continuum regime, the total pressure
at the interface can be eliminated by using an
applicable diffusion equation. Dyer and Sunder-
land [16] presented and solved numerically the
diffusion equation for the transition regime.
More recently, Hill [17] solved the equation in
closed form using an approximate integral
technique to give:

P Ywx — Ywo
N,=— 17
TX 1 oty ] 8 i
Daw 2 37('.Dkw

As in the continuum regime, equation (17) can
be applied if D,, and D,, are effective coeffi-
cients. Again, a value for [D,,], of 3 the value
for free diffusion in air at atmospheric pressure
will be used. The effective value of the Knudsen
diffusion coefficient will be obtained by a formula
suggested by Scott and Dullien [18]

D,.] D
pe[Po — Px]g. [Davle _ Do (18)
M=""x s [Dale ™ Du
Equations (16) and (17) can be combined to
eliminate the total pressure at the interface.
PwX 1_)30
P PO _ .“XNw'/pegc PO
N, == — — 19
X Py Pux "
1 PO PO_tuXNw/pegc__l __ﬁ__
[Daw]e 2 3 7T[Dkw]e

This equation takes the same form as that of the
continuum regime with the exception that ¢ is
now the permeability of the porous solid filled

with gases at a pressure in the transition regime.

From molecular theory it can be shown that the
flow rate in the transition regime will not be
directly proportional to the pressure difference
as seems to be indicated by equation (16).
However, this is consistent with the present
analysis since the permeability itself contains

It is important to note the significance of
equations (15) and (19). If there is no concentra-
tion or partial pressure gradient in the dried
region, the flow rate of water vapor will be zero.
The reason for this has been noted previously
by Dyer [19]. Whenever there is a binary mix-
ture flowing under steady state conditions away
from an interface where one of the components
is insoluble, the concentration gradient and
total pressure gradient are not independent. One
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cannot occur without the other. This is not to
say that drying cannot take place when
dy,/dx =0 and dP/dX # 0. In fact, it has
recently been noted by Massey [20] that under
some freeze-drying conditions, the water vapor
moves out of the dried region so fast that all
residual air is swept away and only hydro-
dynamic flow takes place; diffusional flow is
negligible. In that case equations (15) and (19)
are not applicable since there is no longer a
flow of two species. Equations (12) and (16)
are then the governing momentum equations for
the water vapor flow. The remainder of this
work will be applicable to the conditions of two
species bulk and diffusional flow. The special
case of one species hydrodynamic drying will be
discussed in a later paper.

Interface temperature

An energy balance over the dried region is
used to couple the energy and momentum
equations to get the interface temperature rela-
tions,

dTy — klfi}:’

IIE; x=X* dX x=0+
- Cpr [TE) - TX} = [— NWAH]

(20)

If the temperature gradients are obtained from
equations {6) and (7) and if equation 20) is
slightly rearranged, the result is:

k(T = T] | ke[To — Tx]
X-L X

(21)

= — N,.
C e
AH+‘2—"[7})—}‘}]

After substitution of the appropriate flow
equation [equation (10) for the free-molecule
regime, equation (15) for the continuum regime
and equation (19) for the transition regime | into
equation (21), it is found that the following
relationship for the interface position had the
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same form for all three regimes:

X

X -—-L
C
ol T 1]+ {ar+ 1%~ il

k[T — T,]

Expressions for Q are given below for the three
flow regimes. For the free-molecule flow regime,

(22)

_ - ' ¢ 2
= - 2p TP e, 2
Q [PWX PwO]SrchwRT0+TX (3)
In the transition flow regime,
R; — [4C,R, + R3)?
0= 3G, (24)
where
2 P0p82 [Daw]e pg[Daw}e
8u
_—— 2
oDl )
R2 = f [PWO - wa] G (26)
and
8P
} {[Daw]e 3n [Dkw]e
Pwo.“ pwo + PWX
- . 7
Poegc 2 [Daw]e (2 )
For the continuum flow regime,
—~ B+ [B* — 4AC]%
Q= 74 (28)
where
4 2Pon _ i’i‘lfi’ 29)
Pepd. Pépd.
B:2P02-_PWOPO_.PWXPO+
pw() 1
222 20Dl (30
D en g, P[] )
and
C= zp[Daw]e [}_)wo PO - PwXPO]' (31)
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For the special case where the back face is
perfectly insulated or there is equal drying from
both sides, equation (21) takes the form:

kI[TO - TX]
4 =—N,X.
AH +(C,2)[T, — Tx]

By substituting the appropriate equation for
N,. it can be shown that Ty is a constant
throughout the process, regardless of the flow
regime.

(32)

Drying time equations
The differential equation describing the inter-
face movement is obtained by combining
equation (20) with the following mass balance
at the interface:
dXx
N =pog—
w=PpPi0 at
The resulting differential equation takes the
form:

(33)

kII[TX - TL]+ kI[TO - TX]
X —X-1L X
dt ~ pio {AH + (C,2 [T, — Ty}

with boundary condition X = Oatt = 0.

Before equation (34) can be solved, a relation-
ship for T as a function of X must be obtained
from equation (22). This can be accomplished
by plotting Ty as a function of X and then using
the least squares method for expressing Ty as a
polynomial function of X. If the following linear
relation between Ty and X is used,

(34)

Te=ro+r X (35)

then the differential equation can be solved in
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where Cy = Lkjr, — Ty], (37)

Cy=kylro —Ty) + kyry L= k[ro — Tg],

(38)
Cs = ri[ky — ki, (39)
Ce = —‘;{ZAH +C,riL—C,[ry — Ty]
Cokplro — T,]  C,kyri L (40)
ki — k] (ki — k]
_ QLEIQL‘_T_OJ}
[kII - kI] '
pio
C, = —Z—L{Cp[ro —T,] - 2AH
C, ki[ro — To]}
————— , (41)
[k — ki) '
and
Co= — ﬂ‘zfc,, 1 (42)

The total time can be determined by substitution
of X = Linto equation (36).

For the case where equation (35) does not
adequately describe the interface relation, an
equation of higher order must be used, and the
differential equation must be integrated numeri-
cally. The numerical technique used in this paper
is similar to that suggested by Dyer and Sunder-
land [7].

For the special case where the back face is
perfectly insulated or there is equal drying from
bothsides, Ty = T, and the interface temperature

closed form to give

2
_ﬁX__F_C;(ZX

t =
C, 2
C1Cs —CoCu {_C_s_

2C,2

Cs

C
X244 22X 41
c,m e, }

2CsX + C4 — [C? —4C5 G

CoCa? ~2CeCyC = CrCaCy ) J2C X + Cat [Co — 4G5 Cal

2C3CL - 2G5 Gl 1

36
Co—[Cs® —4C,CsT P

C,+[C*—4C3Cs)
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remains constant. Therefore, equation (34) is

easily integrated to give:

,_po{BH + (C,2)[T, — T} X*
kil To — Tx] 2

The total drying time is obtained by setting
X =L

- (43)

DISCUSSION OF THEORETICAL RESULTS

Numerical calculations have been carried out
for the freeze-drying of beef using the theoretical
analysis. Beef was chosen because of available
property data and also because experimental
drying times were available for comparison.

Values of the mean radius of the capillary
channels r, and the tortuosity factor 7 for beef
were taken from the work of Harper [21] and
were 0000164 ft and 44 respectively. The
thermal conductivity of the dried region was
calculated by a formula suggested by Massey and
Sunderland [22]. The thermal conductivity of
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F1G. 2. Interface temperature as a function of dimensionless
interface position for unidirectional drying of beef.
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the frozen region was taken from the work of
Hill, Leitman and Sunderland [23]. The latent
heat of sublimation and the equilibrium vapor
pressure of frozen beef was taken from the experi-
mental data of Dyer et al. [24]. The porosity of
freeze-dried beef was taken to be 070 as suggested
by Harper and Tappel [1]. The diffusion coeffi-
cients for air and water vapor were calculated by
methods outlined by Reid and Sherwood [25].
The permeability of freeze-dried beef to the flow
of water vapor in the transition regime was
calculated according to the work of Dyer [9],
and the permeability in the continuum regime
was calculated according to Carman [11]. In
addition, Carman suggested the correction factor
for nonroundness of the capillary tubes in the
freeze-dried region to be I' = 0'8.

Theoretical interface temperatures
The interface temperature as a function of the
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F1G. 3. Interface temperature as a function of dimensionless
interface position for unidirectional drying of beef at 1 torr
and several chamber concentrations.
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dimensionless interface position, X/L, for “uni-
directional” drying wascalculated usingequation
(22) and is plotted in Fig. 2 for several different
pressures. The boundary temperatures and the
chamber concentration are fixed. As can be
seen, for all pressures between 05 and 40 torr,
the interface temperature is approximately
a linear function of interface position. The closed
form drying equation, equation (36), is therefore
valid in this pressure range.

Figure 3 shows the dependence of interface
temperature on the chamber concentration.
It can be seen that a lower chamber concentration
causes a decrease in the interface temperature.
This can be explained from an analysis of the
vapor flow. If the partial pressure at the exit is
decreased, the vapor flow rate will increase as
can be seen from equation (17). This in turn will
result in a decrease in the partial pressure of the
water vapor at the interface and consequently
a decrease in the interface temperature.

Theoretical drying times

In Fig. 4, the interface position is plotted as a
function of time for unidirectional drying of a
slab of beef 1°5 in. thick. The fastest drying time
occurred at a chamber pressure of 10 torr.
Figure 5 shows a similar plot for drying where
equal drying occurred at both exposed faces.
Since two phase fronts exist, the total amount
dried is twice the value of the interface position.
A comparison of the two figures shows that the
unidirectional drying system gives no real im-
provements for the particular boundary con-
ditions chosen. Figure 5 also indicates that a
chamber pressure of 1 torr is desirable for
obtaining fast drying rates.

Figure 6 shows the interface movement for
drying in the continuum regime. As expected,
drying occurs faster at 35 torr than at atmospheric
pressure, and at both pressures occurs faster with
the back face heated. Unidirectional drying
techniques take approximately 700h todrya 15
in. slab at atmospheric pressure as compared to
144 h at 35 torr. These drying times are very long,
however, atmospheric freeze-drying could be

JAMES E. HILL and J. EDWARD SUNDERLAND

used for thinner slabs of food. For instance, a
piece of beef § in. thick could be dried in approxi-
mately 15 h when allowed to dry from both sides.

The total interface movement for drying from
both sides is plotted and compared with
unidirectional drying in Fig. 7. Even though the
total time for drying a slab 1'5 in. thick is
approximately the same at 10 torr, in all cases
the sample dries faster when allowed to dry from
both sides. Dyer and Sunderland [7] show that a
slab 2 in. thick, drying at 1-0 torr, will dry 40 per
cent faster when heated from the back than
when allowed to dry from both sides. This can be
seen if the curves of Fig. 7 are extrapolated to 2
in. However, for all beef samples of 15 in. or less,
thereappears to be noadvantage to unidirectional
drying.

Comparison between theoretical and experi-

mental drying times

Hatcher [8] measured the movement of the
interface as a function of time during the freeze-
drying of beef His data were taken by using a
gamma radiation beam and is shown in Fig. 8.

He attempted to dry 2-in. thick samples of
beef unidirectionally by thermally insulating
the sides and back of cylindrical-shaped samples
with 2-inch thick fiberglass insulation. If perfect
insulation had existed, the experimental data
would be expected to follow the theoretical
results for an adiabatic back face. During the
initial stages of drying it can be seen that the
experimental and theoretical curves compare
closely, while at later stages of drying, a progres-
sively faster experimental drying rate is achieved.
A careful analysis of Hatcher’s experiment
shows that initially there was a negligible
temperature gradient in the frozen layer but
at later stages a temperature difference of 2-3°F
existed. It was felt that an upper limit for the
interface movement should occur if the back -
face is heated at the temperature experimentally
measured. The results of these calculations are
also shown in Fig. 8. The experimental curve
lies between the two theoretical curves.

Hardin [4] presents data for the drying of beef
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at 20 torr. His results are shown in Fig 9.
Hardin also used cylindrical samples which he
tried to dry unidirectionally with an insulated
back face. He used an aluminum foil vapor
seal and fiberglassinsulation around the sidesand
bottom. However, the thickness of the insulation
was only 3 in. on the bottom and 3 in. on the side.
Therefore, more heat transfer should have taken
place through the sides and bottom and thus the
experimental data should lie closer to the theore-
tical case of back face heating than did in
Hatcher’s case. The interface movement is closer
to the theoretical results for back face heating.
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SUBLIMATION-DESHYDRATATION DANS LES REGIMES D’ECOULEMENT CONTINU,
DE TRANSITION OU MOLECULAIRE LIBRE

Résumé—On présente une analyse théorigue du transfert de chaleur et de masse durant la sublimation et
la déshydratation. Les équations d'énergie dans les régions séches et gelées sont résolues, On présente des
équations pour un écoulement hydrodynamique et diffusionnel dans la région séche & des régimes d’écoule-
ment molécule libre, de transition et continu. Les équations d’énergie et d’écoulement de vapeur sont
couplées pour donner des solutions od la température de U'interface est fonction du régime d’écoulement,
de la position de I'interface, des données des propriétés de transport, et des conditions limites contrdlées
extérieurement. Les équations sont valables pour un écoulement simultanément hydrodynamique et
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diffusionnel dans les régimes d’écoulement continu et de transition, et sont valables pour une diffusion
moléculaire, dans le régime moléculaire libre. On présente des équations relatives a la position de 'interface
laquelle est une fonction du temps, pour des cas ol la température de 'interface est soit constante soit
fonction linéaire de la position de l'interface. Les résultats montrent que, si la chaleur est transférée a la
fois au travers des couches séches at gelées, la température de I'interface change ainsi que la position de
l'interface. Des calculs numériques sur de la viande congelée et séchée montrent que cette dépendance est
approximativement linéaire pour des pressions de chambre entre 0,5 et 4 torr. On trouve aussi que la
pression entrainant la vitesse de séchage la plus rapide pour la viande se situe entre 0,5 et 1 torr. Pour tous
les échantillons de viande de 3,81 cm d’épaisseur ou moins, I’asséchement est plus rapide quand il se produit
sur les deux faces que lorsqu’il se produit sur une face seulement et quand la chaleur est conduite a travers
la face arriére. On présente des calculs numériques montrant la bonne pratique de I’asséchement 4 froid
d’échantillons minces dans les conditions atmosphériques.

SUBLIMATIONSTROCKNUNG KONTINUIERLICHER, ANLAUFENDER UND FREIER
MOLEKULSTROMUNG

Zusammenfassung—Der Wirme- und Stoffaustausch wihrend des Trocknens durch Sublimation wird
thermisch untersucht. Die Energiegleichungen werden fiir den trockenen und den gefrorenen Bereich
geldst. Die Gleichungen werden fiir hydrodynamische Stromung und Diffusionsstrémung im trockenen
Bereich aufgestellt, bei freier Molekularbewegung fiir Anlauf- und kontinuierliche Strémungszustinde.
Die Gleichungen fiir die Energie und den Dampfstrom werden gekoppelt, um strenge Ldsungen fiir
die Temperatur der Grenzfliche zu erhalten als Funktion der herrschenden Strdmung, der Lage der
Grenzfliche, der Transporteigenschaften und der von aussen regelbaren Randbedigungen. Die
Gleichungen gelten fiir hydrodynamische Stromungen mit Diffusion bei kontinuierlicher Strémung im
Anlauf und fiir molekulare Diffusion, bei freier Molekiilbewegung. Eine geschlossene Form der Gleich-
ungen wird fiir die Lage der Grenzflache gegeben als Funktion der Zeit fiir Fille, in denen die Temperatur
der Grenzfliche entweder konstant oder eine lineare Funktion der Lage der Grenzfliche ist.

Die Ergebnisse zeigen, dass sich die Grenzflichentemperatur mit der Lage der Grenziliche dndert,
wenn die Warme durch die trockene und die gefrorene Schicht iibertragen wird. Numerische Berechnungen
fiir die Trocknung von Gefrierfleisch zeigen, dass diese Beziehung bei Kammerdriicken zwischen 0,5 und
4,0 Torr angenihert linear ist. Ein Druck von 0,5 bis 1,0 Torr ergibt die besten Trocknungsverhltnisse.
Bei allen Fleischproben mit einer Dicke von 3,81 cm oder weniger geht das Trocknen schneller, gleichzeitig
an beiden Fleischseiten, als nur an einer, mit Wiarmeabfuhr an der anderen. Numerische Berechnungen

zeigen die Moglichkeit, diinne gefrorene Probestiicke bei Atmosphérendruck zu trocknen.

CYBJIUMAIUS-IETHAPAIIUA B PEFKUMAX HEIPEPLIBHOT'O
HECTALUMXOHAPHOTO U MOJIEKYJIAPHOTO TEYEHUN

Annoranua—IIpoBOAUTCA TEOPeTUYECKUI AHAJM3 Telio-n Maccoobmena upu cyOauMalum-
merufpanuy. PelaloTcA ypaBHEHHA OHEPTHH JUIF CYXHX U 3AMOPOMEHHBIX YYaCTHOB.
IIpepcraBiedtl ypaBHEHUA [JIA TUAPOIMHAMHYECKOrO M AM(OYIUOHHONO [OTOKA B CYXOM
ydacTKe IPH MOJEKYJIAPHOM, HECTAllHOHAPHOM ¥ HENPEepPHIBHOM DPEMUMAX TeYeHMs. Ypas-
HEeHUHA HHePruu M MMAPOAMHAMMKMN T1apa CIIapUBAITCA C HEJbIO MOJYeHUS B 3AMKHYTOM BHJE
PeLeHHH Jid TeMIIEPaTyPH TPAHUIEL Tapa pasfena as B 3aBUCUMOCTH OT PEIKUMA TeUeHUs,
a TaK#e [JIA MOJEKYJIApHON Juddysuu mpn MOJeKyJApPHOM pesxume. B saMkHyTOM BHTE
NPHBOAATCA yPABHEHUS JJIA TI0JI0AEHUA TPAHNLBL pasdfena §as, 3aBUCAIIETo OT BpeMeHH [T
CIyuaeB, KOIja TeMIepaTypa TpaHulbl paspena ¢as mubo nocrosuna, aubio sRIAeTes
JTuHeNHON QyUKUMeH [OJI0KEHNUA IPAHULB pasfeaa as.

PesyapTaThl [OKA3HIBAIOT, YTO, eCll TEINIOOOMEH INPOMUCXOMUT KAaK B CyXOM, Tak W B
3aMOPOMEHHONM CiI0e, TO TEMIePATypa TpaHMUE pasgeda (a3 Oyaer MeHATbCA Ipn
U3MeHeHUM ee Mono;keHHA. UHUCJEHHBIE pacdeTsl JJIA CYOJUMAIMOHHON CYINKM ‘TOBAMKbErO
MACA [OKA3HBAIOT, YTO T4 3ABUCUMOCTH ABJIAETCA NPAOIM3UTEILHO JHMHEIHON NpU TaBJACHIY
B Kamepe B auarnasoune ot 0,5 10 1,0 mm pr. cr. HafigeHo rakme, 4To HpH JABIEHUH OF 0,5 no
1,0 MM pT. CT. IOJyYAeTCA caMasA BHICOKAA CKOPOCTH CYWIKU. [l Beex 00pa3slioB TOBSKb-
ero Maca ToJumHoi 1,5 KroliMa HiK MeHee CYLIKA POUCXOAUT GhIcTpee ¢ ofenX noBepxXHocTelt
o6pasua, yeM B CIy4ae ONHOCTOPOHHEN CY KM, KOT/JA TEIVIO IIEPEHOCUTCH TellIONPOBOAHOCTbIO
csamu. IlpemcTaBiieHBl 4YHCJELHLIE PACYETHI, KOTOPBIE MOKABHIAIOT BOSM3HHOCTL CyHiu-

MAI[MOHHOM CYIIKHM TOHKUX 00pasnoB mpu atMocepHOM TaBjeHuu.



